Prediction of relative in vivo metabolite exposure from in vitro data using two model drugs: dextromethorphan and omeprazole.
نویسندگان
چکیده
Metabolites can have pharmacological or toxicological effects, inhibit metabolic enzymes, and be used as probes of drug-drug interactions or specific cytochrome P450 (P450) phenotypes. Thus, better understanding and prediction methods are needed to characterize metabolite exposures in vivo. This study aimed to test whether in vitro data could be used to predict and rationalize in vivo metabolite exposures using two model drugs and P450 probes: dextromethorphan and omeprazole with their primary metabolites dextrorphan, 5-hydroxyomeprazole (5OH-omeprazole), and omeprazole sulfone. Relative metabolite exposures were predicted using metabolite formation and elimination clearances. For dextrorphan, the formation clearances of dextrorphan glucuronide and 3-hydroxymorphinan from dextrorphan in human liver microsomes were used to predict metabolite (dextrorphan) clearance. For 5OH-omeprazole and omeprazole sulfone, the depletion rates of the metabolites in human hepatocytes were used to predict metabolite clearance. Dextrorphan/dextromethorphan in vivo metabolite/parent area under the plasma concentration versus time curve ratio (AUC(m)/AUC(p)) was overpredicted by 2.1-fold, whereas 5OH-omeprazole/omeprazole and omeprazole sulfone/omeprazole were predicted within 0.75- and 1.1-fold, respectively. The effect of inhibition or induction of the metabolite's formation and elimination on the AUC(m)/AUC(p) ratio was simulated. The simulations showed that unless metabolite clearance pathways are characterized, interpretation of the metabolic ratios is exceedingly difficult. This study shows that relative in vivo metabolite exposure can be predicted from in vitro data and characterization of secondary metabolism of probe metabolites is critical for interpretation of phenotypic data.
منابع مشابه
Effect of 3,4-Methylenedioxymethamphetamine on Liver CYP2C19 Enzyme Activity in Isolated Perfused Rat Liver Using Omeprazole Probe
Background and purpose: This study aimed at investigating the effects of 3,4-Methylenedioxymethamphetamine (MDMA) on liver cytochrome 2C19 enzyme activity, which is a major liver enzyme in the metabolism of a wide range of drugs, using omeprazole as a probe of the CYP2C19 activity in isolated perfused rat liver. Materials and methods: This experimental study was done in 20 male Sprague–Da...
متن کاملThe quantitative prediction of in vivo enzyme-induction caused by drug exposure from in vitro information on human hepatocytes.
There have been no reports of the quantitative prediction of induction for drug-metabolizing enzymes in humans. We have tried to predict such enzyme induction in humans from in vitro data obtained using human hepatocytes. The in vitro and in vivo data on enzyme induction by inducers, such as rifampicin, phenobarbital and omeprazole, were collected from the published literature. The degree of en...
متن کاملQuantitative prediction of the in vivo inhibition of diazepam metabolism by omeprazole using rat liver microsomes and hepatocytes.
The diazepam (DZ)-omeprazole (OMP) interaction has been selected as a prototype for an important drug-drug interaction involving cytochrome P450 inhibition. The availability of an in vivo K(i) value (unbound K(i), 21 microM) obtained from a series of steady-state inhibitor infusion studies allowed assessment of several in vitro-derived predictions of this inhibition interaction. Studies monitor...
متن کاملFluoxetine and norfluoxetine mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19 and CYP3A4
Fluoxetine and its circulating metabolite norfluoxetine comprise a complex multiple-inhibitor system that causes reversible or time-dependent inhibition of the cytochrome P450 (CYP) family members CYP2D6, CYP3A4, and CYP2C19 in vitro. Although significant inhibition of all three enzymes in vivo was predicted, the areas under the concentration-time curve (AUCs) for midazolam and lovastatin were ...
متن کاملInhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments.
Both the antimalarial prodrug proguanil and the gastric proton pump inhibitor omeprazole are substrates for cytochrome P450 (CYP)2C19 and CYP3A. However, the relative contribution of each enzyme to proguanil bioactivation to cycloguanil and to the metabolism of omeprazole, as well as their potential to interact, remains to be examined. The bioactivation of proguanil to its active metabolite cyc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 40 1 شماره
صفحات -
تاریخ انتشار 2012